Tuesday, November 29, 2011

Should I Use a Switching or Linear DC Power Supply For My Next Test System? (part 3 of 4)

Part 3 of 4: DC Power Supply Common Mode Noise Current Considerations
Common mode noise current is a fact of life that manifests itself in many ways in test systems. There are several mechanisms that couple unwanted common mode noise currents into ground loops. An excellent overview on this is given in a two part post on the General Purpose Test Equipment (GPETE) blog “Ground Loops and Other Spurious Coupling Mechanisms and How to Prevent Them” (click here). However this is also an important consideration with our choice of a DC system power supply for testing as they are a source of common mode noise current. This is one area where linear DC power supplies still outperform switching DC power supplies. This can become a concern in some highly noise-sensitive test applications. As shown in Figure 1 the common mode noise current ICM is a noise signal that flows out of both output leads and returns through earth. By nature it is considered to be a current signal due to its relatively high associated impedance, ZCM.

Figure 1: Common Mode Noise Current and Path

Common mode noise current is often much greater in traditional switching DC power supplies. High voltage slewing (dv/dt) of the switching transistors capacitively couples through to the output, in extreme cases generating up to hundreds of milliamps pk-pk of high frequency current. In comparison, properly designed linear DC power supplies usually generate only microamps pk-pk of common mode noise current. It is worth noting even a linear DC power supply is still capable of generating several milliamps pk-pk of common mode noise current, if not properly designed. High-performance switching DC power supplies are much closer to the performance of a linear. They are designed to have low common mode noise current, typically just a few milliamps.

Common mode noise current can become a problem when it shows up as high frequency voltage spikes superimposed on the DC output voltage. This depends on the magnitude of current and imbalance in impedances in the path to the DUT. If large enough, this can become more troublesome than the differential mode noise voltage present. Generally, the microamp level of a linear DC power supply is negligible, while hundreds of milliamps from a traditional switching DC power supply may be cause for concern. Because common mode noise current is often misunderstood or overlooked, one may be left with a false impression that all switching DC power supplies are simply unsuitable for test, based on a bad experience with using one, not being aware that its high common mode noise current was actually the underlying cause.

In practice, at typical levels, common mode noise current often turns out not to be an issue. First, many applications are relatively insensitive to this noise. For example, equipment in telecommunications and digital information systems are powered by traditional switching DC power supplies in actual use and are reasonable immune to it. Second, where common mode noise current is more critical, the much lower levels from today’s high-performance switching DC power supplies makes it a non-issue in all but the most noise sensitive applications.

In those cases where common mode noise current proves to be a problem, as with some extremely sensitive analog circuitry, adding filtering can be a good solution. You can then take advantage of the benefits a switching DC power supply has to offer. A high-performance switching DC power supply having reasonably low common mode current can usually be made to work without much effort in extremely noise-sensitive applications, using appropriate filtering, capable of attenuating the high frequency content present in the common mode noise current. Such filtering can also prove effective on other high frequency noises, including AC line EMI and ground loop pickup. These other noises may be present regardless of the power supply topology.

Coming up next is the fourth and final part where we make our overall comparison and come to a conclusion on which power supply topology is best suited for test.

References:
1. Taking The Mystery Out Of Switching-Power-Supply Noise Understanding the source of unspecified noise currents and how to measure them can save your sanity
By Craig Maier, Hewlett Packard Co. © 1991 Penton Publishing, Inc.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.